Redx Pharma
(AIM: REDX)
Compelling opportunity to take targeted oncology and fibrosis medicines into clinic

ROCK2 selective inhibitors for the treatment of fibrosis

3rd Annual NASH Summit Europe
23-25 October | London
Redx Pipeline

Highly selected, targeted small molecules for oncology and fibrosis

<table>
<thead>
<tr>
<th>Target/Product</th>
<th>Indication</th>
<th>Research</th>
<th>Preclinical (CTA/IND enabling)</th>
<th>Clinical (Phase 1)</th>
<th>Milestone Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oncology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porcupine (RXC004)</td>
<td>Monotherapy in solid tumour (colorectal, pancreatic, biliary cancer) followed by combination with anti-PD-1/PD-L1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phase 1 mono safety completion & start of Phase 2 mono expansion - H1 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phase 1 combo with anti-PD-1/PD-L1 safety completion – H1 21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-fibrotics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porcupine (RXC006)</td>
<td>Idiopathic pulmonary fibrosis (IPF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clinic ready - H2 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROCK2 selective</td>
<td>Non-alcoholic steatohepatitis (NASH) / IPF / Kidney disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Preclinical development candidate - H2 19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clinic ready - H2 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GI-targeted ROCK</td>
<td>Crohn’s-associated fibrosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Partnering candidate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Validated targets</td>
<td>Oncology and Fibrosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Partnered Pan-RAF inhibitor programme (ongoing milestones)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDX Pipeline as of Oct 2019

NASH Summit Europe | October 2019
ROCK2 is a nodal point in cell signalling pathways associated with fibrotic diseases

- ROCK2 inhibitor PoC in human IPF trial
- Clinical response in lung scores in cGvHD
- ROCK2+/- protected lung fibrosis

- ROCK2 inhibitor = efficacy across multiple organs in cGVHD clinical trial
- ROCK2 inhibitors = ↓ fibrosis in skin (SSc) model
- ROCK2 conditional KO = ↓ hypertension, hypertrophy & atherosclerosis

- ↑ROCK2 in liver fibrosis and diabetic kidney models
- ROCK2 inhibition = ↓ liver fibrosis
- ROCK2 inhibition = ↓ kidney fibrosis
- ROCK2 haplotype KO = ↓ fibrosis in UUO model

- ↑ROCK2 in acute and chronic inflammation
- ROCK2 inhibitors shown to be anti-inflammatory in vivo
- ROCK2 inhibition protects from inflammatory damage in IBD models

ROCK2 inhibition could target many diseases, highlighted by clinical validation across multiple organs in cGvHD
Pan-ROCK inhibitors induce hypotension when dosed systemically in rats

- ROCK1/2 inhibitors deliver an anti-fibrotic effect in preclinical studies
- The pleiotropic effects of ROCK inhibition have previously raised concerns about on-target adverse effects such as hypotension limiting clinical development

Effect of a single oral treatment of azaindole 1 (0, 3, 10 mg/kg) on mean arterial blood pressure in normotensive rats. N=6, data are % change from baseline. *British Journal of Pharmacology* (2007) 152, 1070–1080.
REDX10178, Redx ROCK2 selective tool compound, has no impact on cardiac parameters in telemetered rats

- With REDX10178, Δ 5 mmHg (4%) mean blood pressure and 10-20 bpm (4-8%) in heart rate were observed which are not biologically significant.
- These data are consistent with clinical selective ROCK2 inhibitor KD025, that has shown no CV effects in clinical trials.

*Data are plotted LS mean ±SEM n=6 animals. Statistical effect of treatment analysed by one way ANOVA with Fisher’s LSD post test, compared to vehicle treated animals, *p<0.05.*
Redx ROCK2 inhibitors are potent and selective in biochemical assays

ROCK2 compounds have greater than 100-fold selectivity over ROCK1 in biochemical assays

<table>
<thead>
<tr>
<th>Assay</th>
<th>REDX10178 IC₅₀ (µM)</th>
<th>REDX10616 IC₅₀ (µM)</th>
<th>REDX10843 IC₅₀ (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochemical Activity ROCK2 [ATP 20 µM]</td>
<td>0.002</td>
<td>0.004</td>
<td>0.017</td>
</tr>
<tr>
<td>Biochemical Activity ROCK1 [ATP 20 µM]</td>
<td>0.2</td>
<td>3.0</td>
<td>2.5</td>
</tr>
<tr>
<td>Fold selectivity ROCK2/ROCK1</td>
<td>90-fold</td>
<td>730-fold</td>
<td>150-fold</td>
</tr>
</tbody>
</table>

Note: data are all from n≥2; KD025: Kadmon’s ROCK2 selective compound.
Redx ROCK2 inhibitors are potent and selective in cellular mechanistic assays

- MCF7 cell line expresses both ROCK1 and ROCK2 isoforms (parental line)
- ROCK1 or ROCK2 was stably knocked down using shRNA to develop cell lines selective for each ROCK isoform
- ROCK inhibition in cells is analysed by the inhibition of pMYPT1, downstream of ROCK signalling
Redx ROCK2 inhibitors are potent and selective in cellular mechanistic assays

<table>
<thead>
<tr>
<th>Assay</th>
<th>REDX10178 IC$_{50}$ (µM)</th>
<th>REDX10616 IC$_{50}$ (µM)</th>
<th>REDX10843 IC$_{50}$ (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellular activity ROCK2</td>
<td>0.9</td>
<td>1.0</td>
<td>2.4</td>
</tr>
<tr>
<td>Cellular activity ROCK1*</td>
<td>20</td>
<td>> 30</td>
<td>26</td>
</tr>
<tr>
<td>NanoBRET ROCK2 HEK-293</td>
<td>0.4</td>
<td>0.2</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Note: data are all from n≥2; ELISA MCF7 ROCK1 KD pMYPT1 T853 (ROCK2 selective); ROCK2 KD pMYPT1 T853 (ROCK1 selective); *Expect low activity for ROCK2 selective compounds. KD025: Kadmon’s ROCK2 selective compound.
Redx ROCK2 inhibitors reduce pro-fibrotic and pro-inflammatory activity of kidney mesangial cells cultured in high glucose

- Protein expression of secreted detected in the culture media
- High glucose stimulates a profibrotic phenotype in kidney mesangial cells
- Cells secrete growth factors and cytokines into the supernatant e.g. CTGF, PDGF-BB, TIMP-1 and MCP-1
- Redx ROCK2 inhibitors reduce pro-fibrotic and pro-inflammatory activity of kidney mesangial cells
Redx ROCK2 inhibitors reduce pro-fibrotic and pro-inflammatory activity of kidney mesangial cells cultured in high glucose

<table>
<thead>
<tr>
<th>Assay</th>
<th>REDX10178 IC$_{50}$ (µM)</th>
<th>REDX10616 IC$_{50}$ (µM)</th>
<th>REDX10843 IC$_{50}$ (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenotypic activity TIMP-1 Mouse mesangial cells</td>
<td>0.2</td>
<td>0.9</td>
<td>2.8</td>
</tr>
<tr>
<td>Phenotypic activity PDGF-BB Mouse mesangial cells</td>
<td>0.2</td>
<td>0.4</td>
<td>1.4</td>
</tr>
<tr>
<td>Phenotypic activity MCP-1 Mouse mesangial cells</td>
<td>0.3</td>
<td>1.3</td>
<td>2.1</td>
</tr>
<tr>
<td>Phenotypic activity CTGF Mouse mesangial cells</td>
<td>0.4</td>
<td>0.4</td>
<td>1.5</td>
</tr>
</tbody>
</table>
Hepatic stellate cells are activated by stiff matrix and drive liver fibrosis

- Hepatic stellate cells (HSCs) differentiate to a myofibroblast like phenotype in liver fibrosis
- Increasing matrix tension is believed to be a major driver of HSC differentiation – perpetuating increased fibrosis
- ROCK signaling is central to the mechanosensing of the ECM tension that drives the pro-fibrotic response
- Increased expression of α-SMA and stress fibers are observed
- Activated and myofibroblast-like-HSCs secrete profibrotic cytokines and generate extracellular matrix (ECM)
In vitro liver fibrosis assay – HSC activated to myofibroblast phenotype

Experiment time course

- HSC cell line (LX2) cultured for 2-3 weeks on plastic to induce differentiation into myofibroblasts (LX2-MF)
 - Phenotype and activation status confirmed by expression of α-SMA
- No exogenous stimuli: cells are activated by matrix stiffness and autocrine factors
- LX2-MF are plated for assay and allowed 48-72 h to recover and re-organise stress fibres
- Redx ROCK2 inhibitors are dosed for 48 h and expression of α-SMA (with DRAQ5 as nuclear stain) is detected by immunocytochemistry
ROCK2 inhibitors reduce markers of fibrosis in human liver *in vitro* models

Selective ROCK2 inhibitors reverse the myofibroblast phenotype of activated human hepatic stellate cell myofibroblast

- Selective ROCK2 inhibitors suppress α-SMA in the LX-2 cells – suggesting a reversal of the myofibroblast like phenotype
- No toxicity was observed with compounds (up to 10 µM)

Expression of α-SMA detected by immunocytochemistry

Green: αSMA; purple: nuclei (DRAQ5)
REDX10843 is highly selective when tested against 468 kinases and in a CEREP SafetyScreen44 panel.

- 16 targets inhibited with more than 65% at 10 µM.
- Follow up IC_{50} determination shows that no target is likely to have significant potency in cells.

- No target inhibited more than 50% at 10 µM.
REDX10843 has a favourable ADMET profile and is orally bioavailable across preclinical species

<table>
<thead>
<tr>
<th>Feature</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solubility</td>
<td>FaSSIF</td>
</tr>
<tr>
<td>Microsomal stability</td>
<td>CL_{int} (µL/min/mg) – Mouse</td>
</tr>
<tr>
<td>Hepatocyte stability</td>
<td>CL_{int} (µL/min/10⁶ cells) – Mouse</td>
</tr>
<tr>
<td>Mouse PK IV (2 mpk)</td>
<td>CL (mL/min/kg)</td>
</tr>
<tr>
<td>Rat PK IV (2 mpk)</td>
<td>CL (mL/min/kg)</td>
</tr>
<tr>
<td>Dog PK IV (2 mpk)</td>
<td>CL (mL/min/kg)</td>
</tr>
<tr>
<td>Cardiotoxicity</td>
<td>hERG</td>
</tr>
<tr>
<td>Mutagenicity</td>
<td>Mini-Ames 5 strains ± S9 (plate based)</td>
</tr>
<tr>
<td>Genotoxicity</td>
<td>Micronucleus test using TK6 cells (± S9 metabolic activation)</td>
</tr>
<tr>
<td>Cytotoxicity</td>
<td>Hepatotoxicity assessment using HepG2 C3A spheroids IC_{50}</td>
</tr>
<tr>
<td>CYP inhibition</td>
<td>IC_{50} (µM) – 8 isoforms</td>
</tr>
<tr>
<td>CYP time dependent inhibition</td>
<td>IC_{50} Shift – 8 isoforms</td>
</tr>
<tr>
<td>CYP Reaction Phenotyping</td>
<td>7 isoforms</td>
</tr>
</tbody>
</table>
REDX10843 demonstrates therapeutic anti-fibrotic efficacy in multiple tissue types

Lung
REDX10843 was dosed therapeutically in the murine bleomycin induced lung fibrosis model at 50 mg/kg BID
Pirfenidone was used as positive control and dosed at 100 mg/kg BID
Oropharyngeal administration of 1.5 U/kg bleomycin on day 1, compound dosing initiated from day 7-21

Kidney
REDX10843 was dosed therapeutically in the unilateral ureteral obstruction (UO) murine model at 50 mg/kg BID
Surgery performed on day 0, compound dosing from day 6-11

Liver
REDX10843 was dosed therapeutically in the murine STAM NASH model at 50 mg/kg BID or 50 mg/kg QD
Telmisartan was used as positive control and dosed at 10 mg/kg QD
STZ administration at day 2, HFD induced from week 4, compounds dosed weeks 6-9
REDX10843 suppresses fibrosis in murine bleomycin-induced IPF model

Reduced fibrosis and collagen deposition in the lung

- Significantly reduced fibrosis (Ashcroft score) and collagen deposition (Masson’s trichrome) with REDX10843
- Pirfenidone used as positive control

PD lung gene expression

- Highly significant reduction in pro-fibrotic and pro-inflammatory gene expression in the lung
- Reduced plasma and BAL expression of PD biomarkers

Plasma PD biomarkers
REDX10843 reduces kidney tubular damage and fibrosis in UUO model

Protection from tubular damage and atrophy and reduced collagen deposition with REDX10843

• Enhanced tubular cell survival and reduced damage as measured by auto-fluorescence
• Reduced collagen deposition as measured by Masson’s trichrome & Sirius red
• Reduction in gene expression markers of tissue injury, inflammation and fibrosis

PD gene expression in kidney

Gene

- MMP2
- Nephrin
- IL-1β
- TNFα
- IL-6
- MCP-1

Reduction from vehicle (%)

REDX10843 50 mg/kg BID
REDX10843 suppresses fibrosis in murine STAM NASH liver model

REDX10843 reduced collagen deposition in the liver

![Graph showing Sirius Red (collagen I/III) positive area (%) for different treatments.]

- **Sirius Red positive area (%)**
 - Control
 - Vehicle QD
 - Vehicle BID
 - REDX10843 50 mg/kg QD
 - REDX10843 50 mg/kg BID
 - Telmisartan 10 mg/kg QD

REDX10843 reduced profibrotic fibroblasts in the liver

![Graph showing Reticular fibroblasts (ER-TR7) positive area (%) for different treatments.]

- **Reticular fibroblasts** produce and deposit collagen III in the liver, positive cells determined by automated quantification
- **Significant reduction of pro-fibrotic fibroblasts** in the liver when REDX10843 dosed QD or BID
- **Significant reductions in both liver collagen quantity and bridging fibrosis with QD and BID dosing**
Redx ROCK2 inhibitor programme summary

• Selective inhibition of ROCK2 is an exciting approach to target fibrosis
• Redx series has good preclinical profile
 - Potent and highly selective ROCK2 inhibitors against ROCK1 and against a panel of kinases and other receptor targets.
 - Redx ROCK2 inhibitors suppress pathways associated with fibrosis in \textit{in vitro} kidney and liver models.
 - Demonstrated CV safety in telemetered rats with REDX10178.
 - No safety issues observed in preliminary \textit{in vitro} studies (cardiotoxicity, genotoxicity, mutagenicity, CYP profile).
• Early PK/PD evidence of target engagement of physiologically relevant pathways for fibrosis.
• Robust preclinical efficacy demonstrated with REDX10843, a lead from the series, in murine liver, kidney and lung fibrosis models
• Currently profiling our lead compound for candidate selection by end of 2H2019 (undisclosed data)
Acknowledgments

Biology
- Katie Anderson
- Sara Ceccarelli
- Kay Eckersley
- Rebecca Holland
- Rosie Knowles
- Emily Offer

DMPK
- Stuart Best
- Amy Cooke
- Alison Hunter
- Philip MacFaul
- Andrew Taylor
- Rebecca Taylor

Chemistry
- Inder Bhamra
- Andrew Belfield
- Matthew Box
- Chiara Colletto
- Charles Crossland
- Gayle Douglas
- Camille Gignoux
- Neil Hawkins
- Jean Marc Henry
- Paula Jackson
- Steven Glossop
- Jean-Francois Margathe
- Marcin Odachowski
- Sam Smith

Management
- Richard Armer
- Peter Bunyard
- Clifford Jones

Thank You