Efficacy of the Porcupine inhibitor RXC004 in genetically-defined tumour types

Authors: Simon Woodcock¹, Catherine Eagle¹, Alicia Edmenson Cook¹, Richard Armer¹, Inder Bhamra¹ and Caroline Phillips¹ Affiliations: ¹Redx Pharma, Mereside, Alderley Park, Alderley Edge, Cheshire, SK10 4TG

Redx Pharma

Introduction

Redx Pharma

Signalling through the Wnt pathway is highly regulated at the level of ligand (Wnt), receptor (Fzd/LRP) and downstream components (e.g. destruction complex – APC/Axin/GSK3β). Post-translational modification of Wnt via porcupine (PORCN; a membrane bound O-acyltransferase) is essential for secretion of active Wnt¹. Activity of RNF43/ZNRF3 (E3ubiquitin ligases) results in ubiquitination and membrane clearance of Fzd, whilst RNF43/ZNRF3 levels are kept in check via LGR and secreted RPSO ligands² (Fig. 1).

The potent and selective porcupine (PORCN) inhibitor RXC004 is being investigated in a Phase 1 clinical trial (NCT03447470)³, and has the potential to treat tumours dependent on Wnt-ligand. Upstream Wnt pathway aberrations, including RNF43/ZNRF3 mutations and RSPOfusions, result in high levels of surface Fzd receptors and increased Wntligand dependent signalling⁴ (**Fig. 1**). These aberrations are implicated in pancreatic, gastric and colorectal cancer (CRC).

Figure 1: Upstream alterations trigger aberrant Wnt ligand-dependent signalling RNF43/ZNRF3 keep surface Fzd in check, allowing the destruction complex to phosphorylate and degrade β -catenin - Wnt pathway 'OFF'. Loss-of-function (LOF) RNF43/ZNRF3 mutations (1), or high RSPO expression through gene fusion (2), ultimately leads to accumulation of β -catenin - Wnt pathway 'ON'.

Results

Figure 2: RXC004 potency in genetically-defined pancreatic and CRC cell lines (A) A dose response of RXC004 was evaluated across a panel of geneticallydefined tumour cell lines. (B, C) Cells were treated with RXC004 for 72h. RNA was isolated and analysed using RT-qPCR to assess mRNA expression of the downstream markers of target engagement for the Wnt pathway, Axin2 (B) and cMyc (C). (D) Cells were treated with RXC004 for 5 days in 2D or 3D format, proliferation was measured using an ATP-lite assay. №3 throughout.

Figure 3: Effects of RXC004 treatment on the cell cycle

Cells were treated with RXC004 (100nM) or vehicle (0.1% DMSO) for 72h. Cell cycle profiles were determined using propidium iodide (**A**, **C**) and phospho^{Ser10}. Histone H3 (mitotic marker; **B**, **D**) staining by flow cytometry. Data are N≥3 except for HCT116 and AsPC1 (N=1). Representative flow plots for cell cycle (**C**) and phospho-Histone H3 (**D**) in HPAF-II cells treated as indicated. T-test p values.

conference.ncri.org.uk

Figure 4: RXC004 efficacy and PD in human xenograft models

Relative tumour volumes (RTV) (A-C), end of study tumour weights (D; mg) and end of study relative gene expression of Axin2 and cMyc (E-H). HCT116 (A; 3X10⁶ cells; athwnic nude mice), SNU-1411 (B; 1X10⁷ cells; NCO-SCID mice), CAPAN-2 (C; 3x10⁶ cells; SCID-Beige mice) and AsPC1 (D; 3x10⁶ cells; NOD-SCID mice) were implanted subcutaneously. Treatment was initiated once tumour volumes reached ~100-150mm³. Tumours per group: 10 (A, C) and 8 (B, D). Dosing was 1.5mg/kg BID throughout (A, C) or BID for 7 or 13 days then QD for the remainder of study (B, D). Tumour RNA was isolated for RT-qPCR analysis of the downstream target engagement biomarkers for the Wnt pathway, Axin2 and cMyc at 8h (G) or 12h (E, F, H) post final dose. Mann-Whitney U (A-D) or unpaired t-test (E-H) p values.

PK/PD relationship of RXC004 in the HCT116 model RXC004 1.5mg/kg BID_Plasma PK Figure 5: RXC004 levels and target

engagement over time HCT116 (3x10⁶ cells; athymic nude mice), were implanted subcutaneously and dosed to steady state (1.5mg/kg BID). PK/PD post

cutalicology and to do the two steady state (1.5mg/kg BiD). PK/PD post final dose shows plasma and tumour drug levels in excess of the Axin2 (C_{c0} (~3ng/ml total RXC004) throughout the 12 hrs, resulting in sustained Wnt pathway inhibition as defined by Axin2 mRNA levels, measured by RT-qPCR.

#NCRI2018

Data represent Mean ±SEM. *p<0.05; **p<0.01; ***p<0.001; ****p<0.001

Conclusions

- Tumour cells carrying RNF43 mutations or RSPO fusions are sensitive to RXC004 treatment both in vitro and in vivo.
- RXC004 monotherapy could benefit patients with tumours bearing RNF43 mutations or RSPO fusions.
- Data supports a genetically-defined patient selection strategy for ongoing RXC004 clinical studies.

References

1. Dev Biol, 2011; 355(2):275-285 2. Oncogene, 2017; 36:1461-1473 3. <u>https://clinicaltrials.gov/</u> 4. Oncogene, 2015; 35(17):2197-2207

E.